Lecture 22: Maximum Likelihood Estimator
ثبت نشده
چکیده
In the first part of this lecture, we will deal with the consistency and asymptotic distribution of maximum likelihood estimator. The second part of the lecture focuses on signal estimation/tracking. An estimator is said to be consistent if it converges to the quantity being estimated. This section speaks about the consistency of MLE and conditions under which MLE is consistent.
منابع مشابه
Estimating a Bounded Normal Mean Relative to Squared Error Loss Function
Let be a random sample from a normal distribution with unknown mean and known variance The usual estimator of the mean, i.e., sample mean is the maximum likelihood estimator which under squared error loss function is minimax and admissible estimator. In many practical situations, is known in advance to lie in an interval, say for some In this case, the maximum likelihood estimator...
متن کاملEstimating a Bounded Normal Mean Under the LINEX Loss Function
Let X be a random variable from a normal distribution with unknown mean θ and known variance σ2. In many practical situations, θ is known in advance to lie in an interval, say [−m,m], for some m > 0. As the usual estimator of θ, i.e., X under the LINEX loss function is inadmissible, finding some competitors for X becomes worthwhile. The only study in the literature considered the problem of min...
متن کاملJackknifed Liu-type Estimator in Poisson Regression Model
The Liu estimator has consistently been demonstrated to be an attractive shrinkage method for reducing the effects of multicollinearity. The Poisson regression model is a well-known model in applications when the response variable consists of count data. However, it is known that multicollinearity negatively affects the variance of the maximum likelihood estimator (MLE) of the Poisson regressio...
متن کاملCOS 424 : Interacting with Data
This lecture covers the basics of core concepts in probability and statistics to be used in the course. These include random variables, continuous and discrete distributions, joint and conditional distributions, the chain rule, marginalization, Bayes Rule, independence and conditional independence, and expectation. Probability models are discussed along with the concepts of independently and id...
متن کاملStep change point estimation in the multivariate-attribute process variability using artificial neural networks and maximum likelihood estimation
In some statistical process control applications, the combination of both variable and attribute quality characteristics which are correlated represents the quality of the product or the process. In such processes, identification the time of manifesting the out-of-control states can help the quality engineers to eliminate the assignable causes through proper corrective actions. In this paper, f...
متن کامل